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1 Summary 
The private freight rail industry makes $9.7 billion capital investment in maintaining the network, which is 
comprised of almost 140,000 miles of track and over 100,000 bridges in 2015. However, the Federal Railroad 
Administration still reported 1,096 derailments including 428 track caused accidents in the nation in 2017. 
This makes apparent the need for monitoring rail networks and railway bridge conditions. Recently, we 
introduced an indirect structural health monitoring approach which uses sensors on the vehicle to detect 
infrastructure changes and damage for low-cost maintenance. The ultimate objective of this project is 
to develop a system that would provide continuous monitoring of bridges and rail tracks by collecting 
vibration data from sensors on in-service trains. Ideally, such a system would be able to detect, localize 
and quantify the damage of tracks soon after they begin to occur. 

To achieve the goal, we organized this problem into three tasks, starting with quantifying and localizing 
gradual damage on a laboratory model (section 3), followed by describing the DR-Train dataset collected 
from in-service trains over the past fve years (section 4), and proposing a novel anomaly detection approach 
for monitoring longitude elevation of track geometry after revisiting the DR-Train dataset (section 5). The 
frst task allows us to understand how the vehicle responds to an infrastructure with gradual damage; the 
second task provides us with a comprehensive understanding of our test-bed and dataset; and the third 
task takes a step forward to achieving the indirect monitoring in the real-world dataset. 

Task 1: Supported by the University Transportation Center (UTC) at CMU, we have conducted 
lab-scale experiments and provided evidence of the applicability of the indirect damage diagnosis approach. 
Specifcally, we introduced a physical-insight-based data-driven framework for comparing and estimating 
damage severity and location using only vibration signals collected from vehicles. By studying the physical 
insight of the vehicle dynamics, we achieved indirect gradual damage diagnosis in an unsupervised or 
a semi-supervised way. Further study is required to validate the robustness of this damage diagnosis 
framework with a more complex and realistic system. For instance, on-site tests are needed to verify the 
feasibility of this work in practice, and we also need to study the infuence of di�erent types of damage 
scenarios, vehicle velocity, ongoing traÿc, and environmental factors. 

Task 2: We published the DR-Train dataset, an open-access dataset recording dynamic responses 
from two in-service light rail vehicles that run on a 42.2-km light rail network in the city of Pittsburgh, 
Pennsylvania (USA). The DR-Train dataset also contains GPS positions and environmental data (including 
temperature, wind, weather, and precipitation) as the vehicles were running on the track and the track 
maintenance logs from the light-rail operator. The data were recorded from two light rail vehicles for four 
years with a variety of infuential factors. This dataset could be used for comparing di�erent vibration-based 
damage diagnosis algorithms, validating signal processing methods, investigating environmental infuences 
on train responses, etc. 

Task 3: Currently, revisiting the DR-Train dataset has allowed us to propose a learning-based anomaly 
detection approach for monitoring longitude elevation of track geometry from the dynamic response of 
an in-service train. The proposed method uses a variational autoencoder (VAE) to detect the anomaly. 
The VAE takes accelerations as input and learns a mapping from the frequency-domain of accelerations 
to a low-dimensional latent space that represents the distribution of the observed data. After the model 
is calibrated, the reconstruction probability of the input data is used as an anomaly score for indicating 
how well the input follows the normal pattern. Our proposed approach outperforms two widely used 
supervised baseline models, a logistic regression model (Baseline) and a fully-connected neural network 
(NN-Feature), in terms of recall, precision, and F1-score. The results make the proposed indirect structural 
health monitoring approach a strong candidate for low-cost and frequent track geometry inspection. 

Over the year, one journal paper and one peer-reviewed conference paper have been submitted and are 
under review, one dataset has been published, another journal paper has been drafted. Also, this grant 
has helped us to deploy vibration sensors on the Panhandle bridge, and we have been collecting data for 
validating our indirect damage diagnosis approaches in practice. 
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3 A Damage Localization and Quantifcation Algorithm for Indirect Structural Health Mon-
itoring of Bridges Using Multi-Task Learning1 

3.1 Introduction 
The 2017 National Bridge Inventory of the Federal Highway Administration found that 47,619 out of 
615,002 bridges in the U.S. were in poor condition across the nation [1]. For instance, Of Pennsylvania’s 
more than 22,660 bridges, 23% are considered structurally defcient [2]. This makes apparent the need for 
monitoring the bridge condition. In this paper, we focus on developing a damage diagnosis algorithm for 
estimating both the location and magnitude of damage occurring on an experimental bridge. 

Recently, there is a trend to establish monitoring systems on bridges by indirectly leveraging sensors on 
a passing vehicle. This approach has gained great popularity because of its low cost and low maintenance. 
In 2005, Yang et al. [3] proposed the indirect approach to detect the bridge damage information by 
modeling the vehicle-bridge interaction (VBI) system and extracting bridge frequencies from the dynamic 
response of a passing vehicle. Over the past decade, many researchers have proposed novel methods in 
this feld, which can be divided into two categories depending on whether or not they rely on modal 
parameters [4]. Natural frequency-based methods [3, 5, 6, 7] are only able to do damage detection, while 
the methods of identifying the mode shapes of a bridge [8, 9, 10] can do damage detection and localization. 
In addition, although the non-modal parameter-based methods, such as signal processing and machine 
learning techniques [11, 12, 13, 14, 15], perform well in indicating bridge damage and have the potential to 
quantify the severity, these methods lack robustness to noise and require more physical insights for model 
selection and performance improvement. Figure 1 shows the procedure of the non-modal parameter-based 
method for indirect bridge structural health monitoring. 
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Figure 1. The procedure of the non-modal parameter-based method for the indirect bridge structural 
health monitoring system. Acceleration signals collected from a moving vehicle are pre-processed and 
inputted to a feature extraction system (learning a feature mapping from the spectrum or spectrogram of 
signals), and then the extracted features are used for damage diagnosis. 

In our study, we propose a semi-supervised damage diagnosis algorithm using multi-task learning (MTL), 
which aims at estimating the damage locations and severity levels simultaneously by using acceleration 
signals collected from a vehicle passing over a bridge. We frst derive the theoretical formulation of the 
VBI system with a mass attached at di erent locations on the bridge (representing damage severity) and 
show the nonlinear property of the dynamic response of the passing vehicle. The derivation also informs us 
that we must localize and estimate the severity mass simultaneously so that to minimize the uncertainty 
propagating from the location estimation. Hence, our MTL model uses non-linear activation functions 
and learns three tasks, namely feature extraction, damage location, and damage severity regression, 
simultaneously. A lab-scale experiment, an instrumented vehicle passing over an experimental aluminum 
bridge, is conducted for evaluating our model. The results show that our model can estimate locations of 

1This work is based on the manuscript: Liu J., Noh H. Y., Bielak J., Garrett J. H., Kovačević J., and Bergés M., A 
Damage Localization and Quantifcation Algorithm for Indirect Structural Health Monitoring of Bridges Using Multi-Task 
Learning, AIP Conference Proceedings, Under Review, 2018. 
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the damage with an accuracy of 0.08 m (3.30% of the total length of the bridge) and changes in severity 
level with an accuracy of 17.81 grams (8.9% of the maximum severity mass). We also compare our MTL 
model with a two-step model which performs damage localization and severity estimation step-by-step 
and show that uncertainty propagating from location estimation a�ects the accuracy of damage diagnosis. 

3.2 Numerical Solution of the Vehicle-Bridge Interaction System 
To help inform our choice of statistical analysis methods used to analyze acceleration records collected 
from real-world experiments, we revisit the theoretical formulation derived by Yang et al. [3]. Figure 2 
shows a one degree-of-freedom oscillator moving over a simply-supported beam. We assume the beam 
is of the Euler-Bernoulli type with constant cross sections. Under this assumption, there is no friction 
force between the ’wheel’ and the beam. The damage is simulated by attaching a mass (ms) at di�erent 
locations of the beam (Ls). 

yst
yydy

udy

ust u

ms

mv

kv cv

r, A, E, I

l=vt

L

v

f(t)

L"

Figure 2. Simple vehicle-bridge interaction system with a mass attached at di�erent locations. 

The equations of motion for the vehicle and bridge are: 

mvü dy(t) + kv[udy(t) − ydy(x = vt, t) −yst(x = vt)] 
(1)

+ cv[u̇dy(t) − ẏdy(x = vt, t) − ẏst(x = vt)] +f(t) = 0 

ˆAÿ dy(x,t) + msÿ dy(Ls, t)�(x− Ls) + EIy0000(x,t) = 
� 
− mvgdy 

+ kv[udy(t) − ydy(x = vt, t)−yst(x = vt)] 
(2)

+ cv[u̇dy(t) − ẏdy(x = vt, t)− ẏst(x = vt)] 
+ f(t) �(x −vt) 

where mv, kv, cv,u are the mass, sti�ness, damping coeÿcient, and total displacement of the vehicle, 
respectively; ˆ, A, E, I, yst are the density, sectional area, Young’s modulus, moment of inertia, and the 
static displacement of the bridge, respectively; �(x − vt) is the Dirac delta function; udy(t) and ydy(t) are 
the dynamic displacement of vehicle and bridge, respectively. 

Before deriving the displacement formulas, the nth mode frequency of the beam (!bn) with a mass ms 

attached at the beam can be obtained using Rayleigh’s method: R L 00 h s i2EI 0 [y (x)]2dx EI st!2 2ˇ2 
bn = R L = n (3)

ˆA (x)]2dx+ ms (Ls)]2 (ˆAL+ 2ms sin2 (nˇLs ))L3 
0 [yst [ystm,n L 

where ystm,n(Ls) is the maximum defection at Ls for the nth mode. 
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The displacement of bridge can be expressed in terms of the modal shape, ° n(x), and modal coordinates, 
qbn(t), as: 

1 1X X� �
sin nˇx ydy(x,t) = ° n(x)qbn(t) = qbn(t) (4)

L 
n=1 n=1 

By using the orthogonality conditions, for the nth mode, we have: 

�n�ˆAL sin2 (nˇLs+ ms ) q̈  bn(t)2 L sh 
2ˇ2 EI i2 o 

= sin nˇvt 
(5) 

+ n qbn(t) fc(x = vt, t)
(ˆAL+ 2ms sin2 (nˇLs ))L3 L 

L 

Therefore, 

2 sin nˇvt bnqbn(t) =q̈  bn(t) + !2 fc(x = vt, t) (6)
ˆAL + 2ms sin2 (nˇLs ) L 

L 

where 

(x = vt, t) = −mvg +kv[u(t)dy −ydy(x = vt, t)− yst(x = vt)]fc (7)
+ cv[u̇(t)dy − ẏdy(x = vt, t)− ẏst(x = vt)] + f(t) 

The solution of Eq. (6) can be calculated using a convolution integral Z t2 sin nˇv� qbn(t) = fc(v�,�)hn(t −�)d� (8)
ˆAL + 2ms sin2(nˇLs ) 0 L 

L 

where hn(t − �) is the impulse response function for the nth mode: 

1 
hn(t −�) = sin!bn(t − �) (9)

!bn 

Then, for the nth mode, the bridge displacement can be written as: Z t2 sin nˇx sin nˇv� ydy,n(x,t) = fc(v�,�)hn(t− �)d� (10)
ˆAL + 2ms sin2(nˇLs ) L 0 L 

L 

We can then transform Eq. (10) into the frequency domain: 

2 sin nˇx 
n�

sin nˇvt 
� o 

Ydy,n(x,!) = F · fc(vt, t) �hn(t) (11)
ˆAL + 2ms sin2(nˇLs ) L L 

L 

where, F{f} is defned as the Fourier transform of function f ; f � g is the convolution of f and g. In 
order to solve the Eq. (11), we need to use the convolution theorem: 

F{f � g} = F{f} ·F{g} 
(12)

F{f ·g} = F{f}�F{g} 

Thus, the frequency response of the displacement of the beam is obtained: 
1 

sin nˇx 
h iX 2ˇ nˇv nˇv 

Ydy(x,!) = Hn(!) · Fc(! − ) −Fc(! + ) (13)
i(ˆAL + 2ms sin2 (nˇLs )) L L L 

n=1 L 
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where Hn(!) = 1/(!2 −!2); Fc(!) is the frequency response of the contract force, and is defned asbn 

follows: 
p

Fc(!) = −mvg 2ˇ�(!) +kv[Udy(!)− Ydy(x = vt,!) −Yst(!)] 
(14)

+ i!cv[Udy(!)− Ydy(x = vt,!) −Yst(!)] +F (!) 

where Udy(!), Ydy(x = vt,!) are the frequency response of displacement of vehicle and bridge, respec-
tively; Yst(!) is the frequency response of the initial defection of bridge. 

Then, the mid-span acceleration of the bridge in the frequency domain can be written as: 
1X 2ˇmvL

3!2 �nˇ �n nˇv nˇv ¨ ¨ Ydy(
L 

2 ,!) = sin Udy(! − ) −U ¨ 
dy(! + )

iˇ4EI − i!2L3(ˆAL+ 2ms sin2 (nˇLs )) 2 L L 
n=1 L p � nˇv (15)+ 2ˇg �(! − )

L �o 
− �(! + nˇv )

L 

The n-th mode frequency response of the oscillator’s acceleration is: 

iˇ4EI − i(! − nˇv � 2nˇv � )2L3(ˆAL + 2ms sin2 (nˇLs )) nˇv L L ¨ ¨ Udy,n(!) = U ¨ 
dy,n ! − − 

L3(! − nˇv 
�
nˇ 
� Ydy,n(L 2 ,! − )

L 2ˇmv )2 sin L
L 2 (16) 

p � 2nˇv � 
− 2ˇg �(! − )− �(!)

L 

From the derivation, we can draw the following conclusions: 

• Non-linear property: Eq. (16) illustrates that the transformation from the severity mass to the 
amplitude of the acceleration signal’s frequency response is non-linear. 

• Uncertainty propagation: according to Eq. (16), di�erent damage locations and severity levels only 
vary the term S = ms sin2(nˇLs/L). If we localize and quantify the damage severity step by step (a 
two-step model), the estimation of damage severity is: ms = S/sin2(nˇLs/L). Then the propagation 
of uncertainty from the damage location estimation can be calculated as follows: s 

1 4n2ˇ2S2 cos2 (nˇLs/L)
˙ms = ± ˙2 +˙Ls . (17)S sin4 (nˇLs/L) L2 sin6 (nˇLs/L) 

The sinusoidal function in the denominators makes the uncertainty of ms very large, especially when 
the damage location is near the supports (kLs − L/2k is large). As a result, if a wrong damage 
location estimation appears, this error will propagate and consequence a wrong estimation of the 
damage severity level. 

To overcome the problem of uncertainty propagation and preserve the non-linear property of the 
interactive VBI system, we propose a semi-supervised algorithm using MTL. 

3.3 Semi-supervised Damage Location and Severity Estimation Algorithm using Multi-task learning 
In practice, because of the lake of labeled examples, we want to achieve damage localization and quantifca-
tion in a semi-supervised fashion, which generally needs to localize the damage frst and then quantify the 
damage severity in the same location. However, as mentioned in the previous section, this 2-step method 
makes the uncertainty of the severity level estimation large and can result in an incorrect damage severity 
estimation. Thus, instead of a two-step model, we introduce a semi-supervised MTL model to localize and 
quantify the damage simultaneously with three tasks including reconstruction of input signals, damage 
location regression, and damage severity regression. The multi-task learning improves generalization by 
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leveraging the domain-specifc information contained in the training signals of related tasks [16]. The 
architecture of our model is shown in Figure 3. For the frst task (input reconstruction), we reduce the 
dimensionality of the fast Fourier transformation (FFT) outputs of acceleration signals by using stacked 
autoencoders with non-linear activation functions (ReLU). A stacked autoencoder is a neural network 
consisting of multiple layers of autoencoders to reconstruct its input. The encoder learns a representation z 
for a set of data x, and the decoder can reconstruct x from its encoding z. The architecture of our stacked 
autoencoder is 1936 ! 512 ! 16 ! 512 ! 1936. For the second and the third tasks (damage severity 
estimation and localization), two regression layers are stacked on the bottleneck (or the 16-dimension 
feature layer) of the stacked autoencoder to predict damage location and severity. Furthermore, as a 
semi-supervised model, only a part of location and severity labels are given, which means that for the rest 
of the input signals that are unlabeled, the gradients of the second and the third task will be stopped 
during the training phase. 

Figure 3. The architecture of the semi-supervised MTL model. 

3.4 Experiments & Results 
In this section, we use our semi-supervised MTL model to localize and quantify damage occurring on 
an experimental bridge. Figure 6 shows pictures of the experimental vehicle and the lab-scale bridge. 
The damage proxy is represented by adding mass at di�erent locations on the bridge. A heavier mass 
means more severe damage since it appears as a more signifcant change from the initial condition. In 
this experiment, the mass ranges from 60 to 200 grams with an interval of 10 grams, so the attached 
mass varies from 0.38% to 1.29% of the mass of the bridge, which is 15.5 kg. For each severity level, the 
experiment is run at 3 di�erent damage locations (the frst quarter, the half and the third quarter of the 
bridge span), and for each damage scenario, the experiment is run 30 times. Furthermore, there are four 
accelerometers installed on the experimental vehicle, two of which are on the front and back chassis, and 
two on the front and back wheels. Thus, we have 15 (mass) × 3 (locations) × 30 (iterations) = 1350 
(trials), and 1350 (trials) × 4 (sensors) = 5400 (signals). 

In our study, we compare the performance of our MTL model with that of a 2-step model in damage 
localization and quantifcation. For the MTL model, we frst train it with acceleration signals of lower 
and upper severity levels and their corresponding severity and location labels (severity from 60 grams to 
90 grams and from 180 grams to 200 grams), and then predict the other damage locations and severity 
levels simultaneously. For the 2-step model, we frst estimate damage locations using k-means clustering 
to partition 16-dimension features of FFT of acceleration signals learned by a stacked autoencoder into 3 
clusters, and then we train regression models with the lower- and upper-severe acceleration signals in each 
predicted damage location (cluster), and then predict the other damage locations and severity levels. To 

9/29 



Back Chassis

Back Wheel

Front Chassis

Front Wheel Vehicle

Bridge

Figure 4. Vehicle. Figure 5. Bridge. 

Figure 6. (a) Details of the passing vehicle and (b) the Lab-scale bridge under a moving vehicle. 

evaluate these models, we calculate the root mean squared error (RMSE) between the predicted damage 
locations and severity levels with the corresponding labels. Figure 9 shows that in most cases our MTL 
model outperforms the 2-step model in terms of RMSE. In addition, even with a better damage location 
prediction, the damage severity prediction of the 2-step model is worse than that of the MTL model, which 
provides evidence of the problem of large uncertainty propagation from the location estimation. 
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Figure 9. (a) Damage location and (b) severity prediction results using a 2-step method and MTL. 

3.5 Conclusions 
In this paper, we propose a semi-supervised damage localization and quantifcation algorithm using 
multi-task learning, which preserves the non-linear property of the VBI system and prevents from large 
uncertainty propagating from the damage location estimation. We evaluate our proposed model on an 
experimental dataset, and we show that it outperforms a two-step baseline model that localizes and 
quantifes the damage step by step. Our proposed model can estimate locations of the damage with an 
accuracy of 0.08 m (3.30% of the total length of the bridge) and changes in severity level with an accuracy 
of 17.81 grams (8.9% of the maximum severity mass). These results point to the applicability of indirect 
structural health monitoring with low cost and low maintenance. 
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4 Dynamic responses, GPS positions and environmental conditions of two light rail vehicles 
in Pittsburgh2 

The previous section provides an understanding of the physical and mathematical aspects of a methodology 
for detecting gradual change in a structural model. In this and the next sections, we apply our damage 
diagnosis methodologies to a real-world dataset collected from light rail vehicles, and develop new approaches 
for improving their diagnosis capabilities. 

Over the last fve years, with the support of the UTC, we have collected an extensive data set from 
two light rail vehicles. In earlier projects, we addressed the diÿculties associated with aligning the vehicle 
accelerations with the position data, and how to fuse signals from di�erent sensor channels and di�erent 
vehicles. In the present project, our group organized, validated, and released the collected data. This 
section provides a summary of the earlier work, as well as a description of the approach we followed to 
perform these tasks. Then, in Section 5, with the background of our earlier work, we describe a new 
approach we have developed for achieving indirect track geometry monitoring, which results in fewer false 
alarms than existing methods. 

4.1 Background & Summary 
The private freight rail industry in the U.S. makes $9.7 billion capital investment in maintaining the 
network, which is comprised of almost 140,000 miles of track and over 100,000 bridges in 2015 [17]. However, 
in 2017, the Federal Railroad Administration still reported 11,699 train accidents/incidents including 1,223 
derailments and 470 track-caused accidents/incidents in the nation [18]. To ensure safety and reduce 
maintenance cost, it is necessary to develop low-cost and reliable techniques to monitor the status of 
railroad networks continuously, especially track geometries. In practice, two traditional approaches are 
usually adopted to inspect track infrastructure: (1) visual inspection and (2) inspection using a dedicated 
track geometry car. Visual inspection is neither reliable nor convenient. While inspection using a dedicated 
track geometry car can provide accurate track geometry data, it requires interruptions of regular train 
operations, and each inspection session has a more expensive cost than visual inspection. Due to its 
high cost and interruptions, it is diÿcult to conduct frequent inspections using a track-geometry car. In 
recent years, researchers have proposed many indirect track inspection methods using sensors, such as 
accelerometers and GPS, installed on in-service trains for track geometry monitoring and change detection 
[19, 20, 21, 22, 23, 24, 25, 26, 27] since it can be more reliable than visual inspection and costs less than 
inspection using a track-geometry car. Also, sensors installed on in-service trains can provide continuous 
monitoring of the track without a�ecting regular operations. 

We monitored Pittsburgh’s light rail network from sensors placed on passenger trains, as a more 
economical monitoring approach than either visual inspection or inspection with dedicated track vehicles. 
Over time, we learned how the trains respond to each section of track and use a data-driven approach 
to detect changes to the track condition relative to its historical baseline. We instrumented one train in 
Fall 2013, and a second train in Summer 2015. We have been continuously collecting data on the trains’ 
position using GPS and their dynamic responses using accelerometers; in addition, our dataset includes 
environmental data as the trains were running on the track and the track maintenance logs from the 
light-rail operator. 

Although there are some acceleration datasets for structure vibration testing [28], human activity 
recognition [29], senior fall detection [30] and gait recognition [31], at the time of writing, the DR-Train 
dataset is the only one to include multi-channel and high-frequency acceleration signals and GPS positions 
of light rail vehicles. The data were recorded from two light rail vehicles for four years with a variety of 
infuential factors. This could be a benchmark dataset for comparing di�erent vibration-based damage 

2This work is based on the manuscript: Liu J., Chen S., Lederman G., Kramer D. B., Noh H. Y., Bielak J., Garrett J. H., 
Kovačević J., and Bergés M., Dynamic responses, GPS positions and environmental conditions of two light rail vehicles in 
Pittsburgh, Nature: Scientifc Data, Submitted, 2018. 
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diagnosis algorithms. As a validation of our dataset, we have been able to detect changes in the tracks, 
which correspond to known maintenance activities. Besides detecting those changes, another usage of 
this dataset is for developing or validating data fusion methods. Data fusion methods integrate multiple 
data sources, such as multiple sensor channels on multiple light rail vehicles, to produce more consistent, 
accurate, and useful information than that provided by any individual data source. Our group has proposed 
a data fusion approach that integrates multiple accelerometers and GPS data sources from the same 
or di�erent vehicles [27]. Also, the DR-Train dataset has many other potential usages. For example, 
environmental factors of each service run are logged in the dataset; researchers can reuse the dataset to 
investigate infuences of the weather and temperature on the dynamic response of the light rail vehicles. 

4.2 Methods 
We use a data management system to collect and process dynamic responses and GPS positions of two 
passenger vehicles. We frst introduce our monitoring target, the Pittsburgh Light Rail system, and our 
monitoring carrier, light rail vehicles in the following subsection. 

4.2.1 The Pittsburgh Light Rail and instrumented Light Rail Vehicles 
The Pittsburgh Light Rail, called the ‘T’ lines, is a 42.2-km light rail network in Pittsburgh, Pennsylvania. 
Figure 10 shows the transit map of the ‘T’ lines. This network is owned and operated by the Port 
Authority of Allegheny County (PAAC). It has 53 stations and around 28,000 daily ridership. The rail 
track, including street running track and ballasted track, in this network uses the Pennsylvania Trolley 
gauge rail whose track gauge is 1,588 mm. Also, the network contains bridges, viaducts, and tunnels, and 
is exposed to variable environmental conditions. For example, the temperature we observed ranges from 
−20�C to 35�C. The variety of infuential factors makes it a viable test-bed. 

A light rail vehicle (LRV) is a standardized vehicle for U.S. cities. LRVs of the Pittsburgh’s light 
rail network have two models: Siemens SD-400 LRVs were built from 1985 to 1987 and assigned feet 
numbers 4201 to 4255; Construcciones y Auxiliar de Ferrocarriles S.A. (CAF) LRVs were built from 2003 
to 2004 and assigned feet numbers 4301 to 4328. Those LRVs are supplied by a 650 voltage direct current 
electrifcation system. We installed accelerometers and GPS antennas on LRVs 4306 and 4313. These two 
trains are run in a two-car confguration with total length 25.810 m, empty weight 40 metric tons, total 
passenger capacity 264 and maximum speed 80 km/h. 

4.2.2 Data management system 
Our data management system consists of four key modules (as shown in Figure 11): Sensing module, 
data-acquisition module, data-storage module, and data-processing module. 

Sensing module 
Figures 12 and 13 show our instrumentations of two LRVs (feet number 4306 and 4313). In 2013, 
we instrumented the LRV 4306 by placing two uni-axial accelerometers inside the cabin of the train 
(VibraMetrics 5102 [32]) and a tri-axial accelerometer (PCB 354C03 [33]) on the central wheel truck. The 
central wheel truck, or the central bogie, is a chassis attached to a vehicle and carrying wheelsets with 
a suspension system. Since it is not powered, the electrical noise is minimized. However, it has higher 
installation and maintenance costs than the system inside the cabin. For the second LRV instrumented 
(feet number 4313) in 2015, we placed more sensors, including two uni-axial accelerometers (VibraMetrics 
5102) and two tri-axial accelerometers (PCB 354C03) inside the train, for improving the system. To collect 
the position data, we placed a low-cost BU-353 GPS [34] antenna on the LRV 4306 and 4313. The GPS 
antenna in the LRV 4313 was installed within the interurban light enclosure for having a view of the sky. 
Tables 1 and 2 show important specifcations of those sensors. 

Data-acquisition and data-storage module 
For data acquisition, we connected National Instruments USB-powered data acquisition hardware to a 
computer. Our data acquisition system samples acceleration signals at 1.6KHz and GPS position at 1 
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Figure 10. Pittsburgh Light rail (the ‘T’ Lines) system map. 

Hz and logs the data to an external hard drive. We downloaded the data manually from the onboard 
computers to our local computer every two weeks, because we are not allowed to install wireless devices on 
LRVs. We use National Instruments LabVIEW [35] to control the hardware and acquire acceleration data. 
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Data-
acquisition
Module

Data-storage
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Data-
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Figure 11. Proposed data-management system. 

Figure 12. Data collection system of LRV 4306. Top left picture shows the exteral view of the LRV. 
Bottom left fgure shows a schematic of the sensor locations on the LRV, and the inside view of the train 
and one highlighted uni-axle accelerometer are shown in the right hand side pictures. 

Figure 13. Data collection system of LRV 4313. Top left picture shows the exteral view of the LRV. 
Bottom left fgure shows a schematic of the sensor locations on the LRV, and the inside view of the train 
and one highlighted uni-axle accelerometer are shown in the right hand side pictures. 

Data-processing module 
Before analyzing the collected data, it is necessary to segment it by geographical region. There are two 
reasons: frst, we want to have the LRVs travel along the same path in each particular region; second, the 
GPS signal will be lost in tunnels, and it is diÿcult to determine the location of excitations. The rail 
network is divided into eight regions to ensure continuous GPS trace in each region. Figure 14 shows the 
GPS trace of several passes and the associated track regions. 

The next step in processing the GPS data is to register it to a ground truth of the track position 
because the measurement error from collected GPS data could cause misalignment among di�erent passes. 
PAAC provided us the foot by foot GPS position data, which allowed us to achieve this registration. We 
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Type Model No. of 
axles 

Sensitivity Amplitude 
range 

Resonant 
Frequency 

Piezoelectric 
Accelerometers 

VibraMetrics 
5102 

1 500 mV/g 
(±5%) 

±10 g 2.5 kHz 

PCB 354C03 3 500 mV/g 
(±10%) 

±50 g �12 kHz 

Table 1. Operating specifcations of accelerometers. 

Model Number of channels Sensitivity Update rate Accuracy 
BU-353 48 -163 dBm 1 Hz < 2.5 m 

Table 2. Operating specifcations of GPS receivers. 

frst utilized the iterative closest point (ICP) [36] algorithm to eliminate the global mismatch of the GPS 
data by minimizing the di�erence between every two GPS point clouds. Figure 15 show the GPS traces of 
40 di�erent outbound runs in the 5th track region before and after registration using ICP, respectively. 
For the local mismatch, the one-nearest neighbor algorithm is applied to register GPS position data of 
di�erent runs to the nearest point of the ground truth GPS. 

We also present environmental conditions and maintenance schedules during this monitoring period in 
the following sections. 

4.2.3 Environmental conditions 
Environmental conditions, including temperature, wind, weather, and precipitation, vary signifcantly 
when we collect the data. It is not only because all the sensors are sensitive to the operating temperature, 
but also steel rail expands as it heats up. To record the environmental conditions, we used the time 
stamp and the trains’ GPS position to query environmental conditions from a weather data provider called 
Forecast.io (https://forecast.io/) when we were processing the collected data. This weather data provider 
gathered hour-by-hour environmental observations from tens of thousands of stations worldwide. 

4.2.4 Maintenance schedules 
Because we were not allowed to conduct an experiment on the track, we had to wait for changes made 
by PAAC’s track maintenance. PAAC provides us with track allocation reports, which are stored in the 
DR-Train dataset as well. Those reports allow us to calibrate our data collection system and validate our 
track monitoring approaches. 

4.2.5 Code availability 
The code used to register GPS positions via ICP can be downloaded from MathWorks’ fle exchange [37]. 
The script and function used to load and process the data fles can be downloaded from the online code 
repository. The codes have been tested using MATLAB 2017 on a typical personal computer and can run 
using di�erent MATLAB versions and computers. 

4.2.6 Known issues 
• Even after GPS registration using ICP and one-nearest neighbor algorithms, misalignments of GPS 

positions and accelerations in the spatial domain still exist. This is because the GPS has variable 
accuracy levels at di�erent locations. 

• We found that the train’s ventilation system is a source of noise. On a warm day, the air conditioner 
turns on, and there is higher energy at 30 Hz. Whereas on a cold day, the air conditioner turns o�, 
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Figure 14. An example of the GPS trace of several passes through the ‘T’ lines and the associated track 
regions used for analysis. 

so we observed less energy at 30 Hz. The signal energy at 30 Hz does not depend on the train speed 
or the track roughness. 

• Individual sensors or sensor channels can be malfunctioning. Our group has developed a data fusion 
approach to address this problem [27]. 

4.3 Data Records 
From 2013 to 2016, we collected acceleration and GPS position data with corresponding environmental 
conditions and maintenance logs. The DR-Train dataset includes 31 months of data from LRV 4306 and 11 
months of data from LRV 4313. Table 3 shows the number of passes collected from the eight geographical 
regions mentioned in the Method section. ’Inbound’ means that the LRV goes from South to North, and 
’outbound’ means the opposite direction. In some regions, the number of outbound passes is larger than 
that of inbound passes because, as the train emerges from the tunnel, there is a delay before the GPS can 
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Figure 15. The GPS traces of 40 di�erent outbound passes in the 5th track region before and after 
registation using ICP. 

get a position lock. 
All the data details and directories are stored in ‘pass’ MATLAB objects in ‘\data fles\LRV4306’ 

and ‘\data fles\LRV4313’ folders. The ‘pass’ object is defned in the MATLAB class function ‘pass.m’. 
Properties and Methods of the ‘pass’ class are described in Table 4. For LRV 4306, there are 30,096 ‘pass’ 
objects stored in the fle ‘\data fles\LRV4306\obj dict.mat’. LRV 4306 has fve acceleration channels 
(property ‘sensor’), corresponding to the two uni-axial accelerometers inside the train cabin and the three 
channels of the tri-axial accelerometer on the wheel truck. For LRV 4313, there are 18,929 ‘pass’ objects 
stored in the fle ‘\data fles\LRV4313\obj dict.mat’. LRV 4313 has 8 acceleration channels (property 
‘sensor’), corresponding to the two uni-axial accelerometers and two tri-axial accelerometers inside the 
train cabin. The raw acceleration and GPS position data are stored in ‘acceleration data’ and ‘gps data’ 
folders. These data can be retrieved from fles into the MATLAB/Octave workspace by loading acceleration 
flenames (property ‘acc raw’) and GPS flenames (property ‘gps raw’). Each raw acceleration fle only has 
a one-column MATLAB matrix in double-precision type, which is the logged temporal acceleration data 
of one single channel during one service run. Each raw GPS fle has a fve-column MATLAB matrix in 
double-precision type, corresponding to the longitude, latitude, altitude, velocity and time stamp during 
one service run. The time stamp is a serial date number that represents the whole and fractional number 
of days from a fxed, preset date ,January 0, 0000, in the proleptic ISO calendar. 

Folder ‘\data fles\track maintenance logs’ stores weekly maintenance schedule sheets from Light Rail 
System, PAAC. Those fles provide information on what was happening on the rail network. Typically, the 
only work, which matters for this research, is done by the ‘Way Department’ that maintains the tracks. 

This dataset is available from http://dx.doi.org/10.5281/zenodo.1432702. 

4.4 Technical Validation 
We validated the technical quality of the presented dataset from three perspectives. First, we consider a 
series of possible failure situations for the process of data collection and justify why we can rule them out; 
second, we consider a series of basic requirements that a high-quality dataset should satisfy and validate 
that the presented dataset satisfes all the requirements; third, a series of experiments have shown that 
changes to the tracks can be successfully detected based on the presented dataset. 

4.4.1 Data Collection Failures 
We consider the possible failure situations (missing data or corrupted data) as follows. 
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LRV 4306 LRV 4313 
Region Inbound Outbound Inbound Outbound Total 

1 226 363 51 82 722 
2 569 577 138 136 1420 
3 579 567 135 131 1412 
4 288 292 33 34 647 
5 317 317 102 96 832 
6 440 425 116 110 1091 
7 356 342 85 80 863 
8 180 182 65 63 490 

Total 2955 3065 725 732 7477 

Table 3. Number of passes collected from LRVs 4306 and 4313 through the eight geographical regions. 

• The installed accelerometers fail to sense acceleration signals; 

• The data-acquisition system fails to transfer acceleration signals to the installed computer; 

• The installed computer fails to store the acceleration signals on the local disk; 

• The data-processing system fails to organize acceleration signals correspondingly in the database. 

Data visualization is an eÿcient way to rule out the frst and the second failure situations. We added 
chart blocks in our LabVIEW implementation to visualize the collected acceleration signals instantaneously. 
We also plotted the collected data on our local computer. Figure 16 shows 27 properly collected spatial-
domain acceleration samples of accelerometer channel 5 in geographical region 5 (outbound direction) 
during May 2014. By checking the size of logged data directly, we can rule out the third failure situation. 
Also, for this dataset, we rule out the top three failures by checking whether signals are sampled continuously 
with a constant sampling rate in the time domain. To rule out the fourth failure situation we have to 
download the data back to our local computer and validate the technical quality of them after data 
processing. The following section introduces two basic requirements of a high-quality dataset and their 
validations. 

4.4.2 Basic requirements 
We consider the basic requirements that a high-quality dataset should satisfy. 

• R1: The acceleration signals collected from the same accelerometer channel should be consistent 
across trials during a period, such as one day, one week or one month. Since the acceleration signal 
of each trial refects the roughness of the same track, the overall profles of acceleration signals should 
be similar across trials. Otherwise, this dataset is problematic; 

• R2: The acceleration signals should be correlated with the GPS positions. As a discrete-space signal, 
the acceleration signal of each trial is associated with the position of the track. For example, the 
amplitude of the acceleration signal around the train station should be low. Otherwise, this dataset 
is problematic; 

Figure 17 and 18 show time periods (days) when sensors on LRVs 4306 and 4313 were recording. Blue 
lines indicate recording days, and white gaps indicate recording gaps in the dataset. The recording gaps 
are caused by one of three reasons: 1) Sometimes, the data-storage module runs out of space before 
downloading the data, and we are not allowed to install wireless sensors on the LRV in order to avoid 
interference between signals from our system and those of train control & communication systems; 2) The 
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Figure 16. Visulizing acceleration samples in the spatial domain. We visualize the 27 acceleration 
samples of accelerometer channel fve in region fve during May 2014. 

Figure 17. Time periods when sensors on LRV 4306 were recording. Blue lines indicate days when 
accelerometers and GPS were recording. The causes of recording gaps are explained in section 4.4.2. 

data management system may not restart automatically after restarting the light rail vehicles, although 
we have programmed it to do that; 3) The light rail vehicles were not in service because of maintenance, 
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Figure 18. Time periods when sensors on LRV 4313 were recording. Blue lines indicate days when 
accelerometers and GPS were recording. The causes of recording gaps are explained in section 4.4.2. 

inspection and repair. 

Validation of R1 
To prove the consistency of acceleration signals from the same accelerometer channel, we use the two-sample 
Kolmogorov–Smirnov test (K-S test) [38]. The two-sample K-S test is a general nonparametric method 
for comparing two samples. It quantifes a distance between the empirical distribution functions of two 
samples. The Kolmogorov–Smirnov statistic is 

Dn,m = sup |F1,n(x) −F2,m(x)|, 
x 

where F1,n and F2,m are the empirical distribution functions of the two samples, respectively, and sup 
is the supremum function. The null hypothesis that the samples are drawn from the same distribution is 
rejected at level if r 

Dn,m > c( ) n +m
, 

nm 

where n and m are the sizes of the two samples respectively, and for 5% and 1% rejection levels, c( ) is 
equal to 1.36 and 1.63, respectively. 

The null hypothesis of our test is that the acceleration signals from the same sensor channel in the 
same time period and the same geographical region are drawn from the same distribution. The boxplot 
(Figure 19) shows a result of this test for LRV 4306. We randomly sample 1,000 acceleration amplitudes 
from each trail of the same sensor channel of LRV 4306 during May 2014 in region fve. LRV 4306 ran 
27 outbound trails during May 2014 in region fve. We then calculate the K-S statistics of each pair of 
acceleration samples. For the tri-axle accelerometer installed on the central wheel truck (less electrical 
noise), the tests of the three channels are not rejected, both at 5% signifcance level and at 1% signifcance 
level. However, the two uni-axle accelerometers installed in the cabin are rejected at 5% signifcance level, 
but not rejected at 1% signifcance level. 

Validation of R2 
Because the trains were moving at di�erent speeds, it is diÿcult to prove that every single acceleration 
and GPS position are correlated in the time domain. However, we can prove the geographical alignment of 
acceleration signals and GPS positions with the information of train stations. When arriving at a train 
station, the LRV stays stationary and idles. We assume that amplitude of the idling accelerations would 
be lower than the traveling accelerations due to the excitation of the tracks. Figure 20 shows two examples 
of acceleration and position data in Region 5. There are fve stations in Region 5: Memorial Station (MS), 
Killarney Station (KS), South Bank Station (SS), Denise Station (DS), and Bon Air Station (BS). We 
can observe that the amplitude of the acceleration signal is small when the LRV was at stations, and the 
mileage stays the same at stations. 
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Figure 19. A result of the two-sample K-S test. For LRV 4306, there are 27 outbound trails during May 
2014 in region fve. We randomly sample 1,000 acceleration amplitudes from each trail and calculate the 
K-S statistics of each pair of samples. If the statistic is above the red line, the null hypothesis that two 
samples are drawn from the same distribution is rejected at level 5%. If the statistic is above the black 
line, the null hypothesis is rejected at level 1%. 

Figure 20. Two examples of acceleration and position data in region fve. When the LRV was at those fve 
stations: Memorial Station (MS), Killarney Station (KS), South Bank Station (SS), Denise Station (DS), 
and Bon Air Station (BS), the amplitude of the acceleration signal is small, and mileage stays the same. 

4.4.3 Publications based on the presented dataset 
Papers [25, 26, 27, 39] using the data described here have been published. Lederman et al. used the 
collected dataset to detect changes in the tracks, including changes in the tracks due to repair and changes 
in track geometry due to tamping, by applying implicit and explicit models. The implicit model frst 
extracts di�erent features from the raw acceleration signals and then performs change detection with 
some common methods, including cumulative sum chart control (CUSUM) [40], generalized likelihood 
ratio (GLR) [40] and Haar flter [41]. The explicit model solves for the parameters of the train’s main 
suspension by enforcing sparsity in modeling the train system and learns where in the tracks the train is 
most excited by enforcing sparsity in the track profle. Lederman et al. [27] also proposed a data fusion 
approach for enabling data-driven rail-infrastructure monitoring from multiple in-service trains using the 
implicit model of the tracks. 
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4.5 Usage Notes 
The data is provided in a MAT-fle format with query fles, and therefore it is convenient to load it in 
MATLAB. The script fle (\code\main script.m) calls the function (\code\load processing.m) for loading 
and processing data and returns ‘pass’ objects, acceleration signals, and GPS positions. 
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5 Variational autoencoder for detecting anomalies in longitude elevation of track geometry 
using the dynamic response of an in-service train 

Track geometry is the three-dimensional geometry of track layouts such as transverse elevations and 
longitudinal elevations, whose correct positions are of critical importance to ensure the safety of train 
operations. In this section, we propose a learning-based anomaly detection approach for monitoring 
longitude elevation of track geometry from the dynamic response of an in-service train. Also, we have 
validated this approach on the DR-Train dataset. 

In general, the methods for estimating track geometry using acceleration data can be divided into 
two groups: model-driven methods [23, 42] and data-driven methods. In model-driven methods, there is 
usually a train-track interaction system that models the inverse relationship between vehicle acceleration 
and track geometry using prior knowledge about the system. However, the dynamics model depends on 
the characteristics of the train system, such as mass and the suspension system properties, which make 
model-driven methods susceptible to system characteristic uncertainties. For data-driven methods, Fourier 
Transform [22] and Wavelet [43] approaches are commonly employed to extract features from acceleration 
log and identify track geometry changes. However, data-driven methods, which rely much on the data, lack 
robustness to noise and require more physical insight for model selection and performance improvement. 

It is worth noticing that both approaches mentioned above heavily rely on hand-crafted features. 
However, due to the noise in the collected accelerations, detecting anomalies using hand-crafted features 
often results in more false alarms. Many researchers have turned to learning-based methods to extract 
features from time-series signals automatically. Ordóñez et al. [44] used a many-to-one Long-Short-Term-
Memory (LSTM) for wearable activity recognition. DiPietro et al. [45] proposed an LSTM-Conditional 
Random Field (CRF) model to extract features from raw acceleration signals for surgical activity labeling. 
Though learning-based methods obtained decent results in the activity recognition feld, they might not 
be suitable for the geometry inspection problem for three reasons: (1) The acceleration signal is a direct 
measurement of the activity recognition application but an indirect measurement in the track inspection 
task. Therefore, acceleration signals recorded from an in-service train will contain more noise and will 
not directly refect the track geometry. (2) activity recognition is a well-defned classifcation problem, 
but track geometry inspection is an anomaly detection problem, which is likely to have an imbalance 
distribution over normal samples and abnormal samples. (3) Directly using raw acceleration signals as 
input results in a high-dimension feature space, which can easily cause overftting. 

Considering the limitations of the LSTM-based methods, we turned to a variational autoencoder 
(VAE)-based anomaly detection method based on the insight of the underlying physical motion model. 
Through the solution of a single-mode di�erential equation of the motion model, we found that the 
spectrum of an acceleration signal is closely related to the spectrum of its corresponding track geometry. 
We considered the track geometry with a change as an anomaly, measured by the energy of the geometry 
slopes. The proposed method uses a VAE to detect anomalies. The VAE takes accelerations as input 
and learns a mapping from the frequency-domain of accelerations to a low-dimensional latent space 
that represents the distribution of the observed data. After the model is calibrated, the reconstruction 
probability of the input data is used as an anomaly score for indicating how well the input follows the 
normal pattern. 

We validate the proposed VAE-based approach on the vibration data (DR-Train) collected from 
an in-service train that runs on a 42.2-km light rail network in the city of Pittsburgh, Pennsylvania. 
Figure 21 to 24 shows the results of our proposed method (VAE) with di�erent anomaly thresholds for the 
energy of geometry slopes. It successfully addresses the overftting problem presented in the LSTM-based 
methods and outperforms two supervised baseline models, a logistic regression model (Baseline) and a 
fully-connected neural network (NN-Feature), in terms of recall, precision, F1-score and area under the 
receiver operating characteristic (ROC) curve. The results outperform the other two methods and make the 
proposed indirect structural health monitoring approach a strong candidate for low-cost and frequent track 
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geometry inspection. Nonetheless, the authors identifed three primary sources of error of the proposed 
approach: (1) GPS noise and drifting. Due to the noise from the GPS unit, acceleration signals from 
di�erent passes are not well aligned with each other spatially; (2) Accelerometer noise. Accelerometers 
usually experience a high noise level that requires data denoising for acceleration data; (3) Asynchronous 
data. Data from di�erent passes with di�erent train velocities are collected asynchronously. In the future, 
we will concentrate on studying uncertainties of the model and improving its performance by adding 
physical constraints and prior knowledge. 

Figure 21. Recall, precision, F1-Score, 
and AUC with a 50 threshold of the 
energy of 4-second slopes. 

Figure 22. Recall, precision, F1-Score, 
and AUC with a 55 threshold of the 
energy of 4-second slopes. 

Figure 23. Recall, precision, F1-Score, 
and AUC with a 60 threshold of the 
energy of 4-second slopes. 

Figure 24. Recall, precision, F1-Score, 
and AUC with a 65 threshold of the 
energy of 4-second slopes. 
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6 Project Contributions 
We have made contributions to indirect structural health monitoring, which is a low-cost and low-
maintenance technology to monitor the rail and bridge infrastructure continuously. 

Over the one-year project, we have developed and validated algorithms which are able to estimate, 
localize and quantify gradual changes in the infrastructure. We have investigated this problem in a 
theoretical way and conducted lab-scale experiments to prove the applicability of the indirect structural 
health monitoring. Signal processing and dimensionality reduction methods are used to achieve damage 
severity comparison, estimation, and localization with high accuracy. We hope we can continue to conduct 
on-site experiments and further studies for validating and consolidating the robustness of this damage 
diagnosis framework in the real world. 

Also, we have contributed to released an open-access dataset recording dynamic responses from two 
in-service light rail vehicles that run on a 42.2-km light rail network in the city of Pittsburgh, Pennsylvania 
(USA). Our dataset also contains GPS positions and environmental data (including temperature, wind, 
weather, and precipitation) as the vehicles were running on the track and the track maintenance logs from 
the light-rail operator. We hope to publicize this dataset widely, which could inspire more research in this 
feld, and allow us to understand the collected data better. 

We have proposed a novel learning-based anomaly detection approach for monitoring longitude elevation 
of track geometry from the dynamic response of an in-service train. This approach overcomes limitations 
of model-based methods and methods using hand-crafted features, which are susceptible to characteristic 
uncertainties of the train-track interaction system and have many false alarms. It also outperforms 
conventional data-driven methods that use high dimensional time-domain accelerations as input and su�er 
overftting for the track geometry anomaly detection problem. Our results as presented in section 5 make 
the proposed indirect structural health monitoring approach a strong candidate for low-cost and frequent 
track geometry inspection. 
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Name Description 

Properties 

acc al address where aligned accelerometer data is stored 
acc raw address where accelerometer data is stored 

acc samp accelerometer sampling rate (Hz) 
count this is the indice of the pass in terms of all passes 
date date in UTC time 
datel date string in local time 
daten property date in ’datenum’ format 
datenl property datal in ’datenum’ format 

direction ’inbound’ our ’outbound’ 
gps al address where aligned GPS is stored 

gps raw address where GPS is stored 
gps samp gps sampling rate (Hz) 

region region on the map where the signal comes from 
sensor number of sensor channel 

summary weather summary text at time of pass 
summary8 weather summary text 8 hours prior to pass 

temp temperature at the time of the pass 
temp8 temperature 8 hours prior to pass 
train number of the train 

Methods 

addlistener Add listener for event. 
addprop Add dynamic property to MATLAB object. 

coor show the coordinate system for the selected data 
date bounds This function take an array of passes, as well as lower and 

upper bounds for the dates (as strings), then plots the data 
that falls between the two specifed date strings. Note this 
outputs the dates selected. 

delete Delete a handle object. 
eq == (EQ) Test handle equality. 

fndobj Find objects matching specifed conditions. 
fndprop Find property of MATLAB handle object. 

ge >= (GE) Greater than or equal relation for handles. 
gt > (GT) Greater than relation for handles. 

isvalid Test handle validity. 
le <= (LE) Less than or equal relation for handles. 

listener Add listener for event without binding the listener to the 
source object. 

lt < (LT) Less than relation for handles. 
ne = (NE) Not equal relation for handles. 

notify Notify listeners of event. 
plot both Plot the data in time and frequency domain 
plot freq Plot the data in the frequency domain 
plot gps Plot the GPS trace on a map 
plot time Plot the data in the time domain 
scatter Plot energy of the signal at the GPS points 

Table 4. Properties and methods of the ’pass’ class. 
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